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A Note on Class-Number One in Pure Cubic Fields

By H. C. Williams and Daniel Shanks

Abstract. We examine a subset of the pure cubic fields wherein individual fields
appear to have a probability of having class-number one approximately equal to
3/5. We also suggest more elaborate but more efficient algorithms that could be
used to extend the data.

1. Introduction. It is known [1, p. 313] that if n distinct primes p = 1 (mod 3)
divide NV , the class-number % of Q(\3/]7 ) is divisible by 3”. Since almost all N, i.e., all
except for a set of measure zero, satisfy this condition, one weak consequence is that
the density of Q(i/]v ) with 2 = 1 must equal zero. But if NV is a prime ¢ = 2 (mod 3),
then 3 does not divide 4, and if we restrict NV to these prime radicands q it is plausible
[2] that the Q(‘\3/?q— ) with & = 1 now have a positive asymptotic density in this
smaller set of fields.

Of the 617 primes ¢ < 10%, the table computed for [1] lists 294 with # = 1, and
in the review [2] of this table it was pointed out that this mean density: 294/617 =
0.476 tends to remain quite stable as the upper limit for ¢ increases towards 10%. It
was suggested [2] that the table be extended for N = g > 10* in order to examine the
constancy of this mean density.

This was done in [3]. For the 1880¢q < 35,000 the class-numbers of Q(\3/c7) are
distributed as follows:

h number of ¢ mean density

1 890 04734

2 486 0.2585

4 186 0.0989

5 49 0.0261

7 39 0.0207

8 72 0.0383
>9 158 0.0840

Throughout the range 10* < g < Q = 35000, the percentage having 2 = 1 is confined
between —47.13% and —48.31%; see [3]. The computer run was terminated at Q =
35000 because the Voronoi algorithm for computing the fundamental unit 4 was be-
coming too time-consuming. This condition is much aggravated by this specific set
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Q(\3/E ), since so many of these fields have # = 1 and, therefore, must have very large
u. Since the discriminants are O(g?), the regulators R = In u are O(q' t€) if h = 1.
The period of the Voronoi algorithm is nearly proportional to the regulator for these
long periods.

2. Two New Developments. It is clear from the table that if we could further
restrict our set of Q(\?/&) to eliminate those with even class numbers, the mean density
of those having # = 1 would rise even higher. In [4], Eisenbeis, Frey and Ommerborn
study the 2-rank of pure cubic fields by the use of the Selmer group of appropriate
elliptic curves, and they evaluate this 2-rank for the same 8122 fields Q(%/Jv ) with
N < 10% already tabulated [2]. Of these 8122 fields, 4612 or 56.8% have odd h. If
one restricts V to the 1229 primes < 10, the percentage changes little: 676 fields or
55.0%. But when they confine the data to the 404 primes = *1 (mod 9), the ratio
changes markedly: 289 fields or 71.5% have odd class numbers. In [4], a probabilistic,
heuristic argument involving the Selmer group is included to explain this phenomenon.
Whatever its explanation, the phenomenon is clearly pertinent for our # = 1 problem.
If we restrict our fields to Q(\3/ r) where the r are primes = 17 (mod 18), we have
eliminated 3 | # and “discouraged”, but not eliminated, 2 | 4. Thus, the mean density
of A = 1 must rise.

We should state that this set Q(g/ r) is not at all artificial. The 7 primes do
have a natural role in the theory of pure cubic fields. The known inequalities for the
3-rank of such fields [1, p. 313] involve two types of primes that divide the discrimi-
nant, wy and w,. But the 7 primes are the only primes besides 3 that are not counted
in w, orin w,. Further, the discriminant always equals — 3r2. The g primes that
are not r primes have discriminants d = — 27q2 instead, and therefore the ordering of
the Q({”/E ) by q is different than their ordering by d. The r primes have an asymptotic
density of 1/3 in the first ordering, and a density of 3/5 in the second. With this
second ordering the mean density of the Q(\3/ q) with A = 1 would obviously be larger
than the 0.4734 listed above. In the set Q(\3/ 7 ) there is no such ambiguity. (In the
Q(\‘V]v ) set, where some NV are not square-free, the two orderings differ even more.)
Since the Q(i/ r) set has great homogeneity, it may be presumed that its theory, and
its computation, would both be simplified.

The second new development that led to the present note was the considerable
improvement that was made in the programming for the Voronoi algorithm. This is
reported elsewhere [5], together with other tables computed with its use. With the
faster algorithm, the smaller discriminants in the K = Q(\3/ 7), and their more restricted
population, we have now computed these fields for all » < 200,000.

As before, h was computed by combining the regulator R with an Euler product
estimate for limg_, . $.(5)/¢(5).

3. The Apparent Density. In the table that follows we list V(R), the number
of primes r <R, and C(R), the number of such Q (/7 ) having class-number 1. We
show increments in R of 2000 until R = 40,000 and increments of 10,000 thereafter.
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R C(R) N(R) C/N R C(R) N(R) C/N
2000 33 50 0.66000 38000 405 672 0.60268
4000 59 90 0.65556 40000 423 699 0.60515
6000 87 132 0.65909 50000 524 855 0.61287
8000 113 172 0.65698 60000 634 1014 0.62525

10000 126 201 0.62687 70000 721 1160 0.62672
12000 151 241 0.62656 80000 817 1309 0.62414
14000 177 277 0.63899 90000 896 1452 0.61708

16000 193 309 0.62460 100000 969 1594 0.60790
18000 213 344 0.61919 110000 1061 1738 0.61047
20000 233 375 0.62133 120000 1150 1883 0.61073
22000 251 408 0.61520 130000 1244 2038 0.61040
24000 274 446 0.61435 140000 1323 2168 0.61024
26000 292 478 0.61088 150000 1399 2299 0.60853
28000 313 514 0.60895 160000 1482 2440 0.60738
30000 330 543 0.60773 170000 1569 2576 0.60908
32000 344 572 0.60140 180000 1657 2719 0.60942
34000 369 608 0.60691 190000 1740 2854 0.60967
36000 388 642 0.60436 200000 1827 2993 0.61042

We observe the following behavior of the mean density C(R)/N(R):

a. Moderate fluctuations and a moderate decline until about R = 20,000. Both
of these features were expected.

b. A long, smooth, shallow wave with a local minimum of about 0.603 near
R = 38,000 and a local maximum of about 0.627 near R = 70,000. No known
explanation.

c. Very small oscillations for 100,000 < r < 150,000.

d. A surprisingly flat behavior from 150,000 to 200,000.

Of course, nothing conclusive can be deduced from such empirical data. None-
theless, the data look sufficiently good to suggest the following conjectures:

A. Class-number 1 has an asymptotic density in Q(\3/;). With less assurance, we
think it possible for the alleged limit to be close to the mean density at the end of
our table.

B. If, contrary to the second sentence in A, the mean density continues to de-
crease, it is certainly plausible that the decrease will be very slow; e.g., C(R)/N(R) <
1/2 can hardly be expected until R is very large.

C. In any case, it is highly probable that there are infinitely many Q(\E’/ 7) with
class-number 1.

The data do not justify more explicit language: ‘‘close to” in A, and “very
large” in B we must leave undefined.

The problem of proving the existence of infinitely many algebraic number fields
with # = 1 is a long-standing one; it is unlikely that it will be settled in the near
future. The prevalence of & = 1 in certain sets of quadratic, cubic and quartic fields
remains a most mysterious phenomenon. This is aggravated in Q(Q/JV ) since these
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fields are nonabelian. In abelian fields, it is conceivable that a deep study of cyclotomic
units might throw some light on the problem.

4. Algorithmic Possibilities. There are, however, interesting algorithmic possibil-
ities for extending the computation beyond R = 200,000. If one wished to examine
samples of 100 fields, say, around R = 500,000 or R = 108, or larger, but did not
want to rely on brute force or faster computers, the following algorithmic possibilities
could be examined.

1. First, eliminate all Q(3/7) with even % by using the method in [4]. This
would be substantially abbreviated in our cases since we do not need to know the exact
2-rank, merely that it exceeds zero. Our restriction to # = 17 (mod 18) should also
simplify the calculation.

2. There is a real possibility that the algorithm in [4] can be replaced with a
much more elementary algorithm. This would be of mathematical interest in its own
right.

3. With the even & thus culled out, the main competitors for # = 1 would be
h=5and h = 7. It would be unnecessary to run the Voronoi algorithm to com-
pletion; as soon as its period becomes sufficiently long to assure that % is less than 5,
it could be terminated. Thus, the Voronoi computation would be reduced to about
one-fifth.

4. It is not improbable that the Voronoi algorithm itself can be radically abbre-
viated. This would require extensive study and development, but, if attained, it would
also be of mathematical interest in its own right.

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, Canada R3T 2N2

Department of Mathematics
University of Maryland
College Park, Maryland 20742

1. PIERRE BARRUCAND, H. C. WILLIAMS & L. BANIUK, ‘“A computational technique
for determining the class number of a pure cubic field,”” Math. Comp., v. 30, 1976, pp. 312—-323.

2. DANIEL SHANKS, Review of UMT file: “Table of pure cubic fields Q(\3/ l—)) for D <
10%,” Math. Comp., v. 30, 1976, pp. 377—379.

3. H. C. WILLIAMS, “Certain pure cubic fields with class number one,” Math. Comp., v. 31,
19717, pp. 578—580; “Corrigendum,” Math. Comp., v. 33, 1979, pp. 847—848. .

4. H. EISENBEIS, G. FREY & B. OMMERBORN, “Computation of the 2-rank of pure
cubic fields,”” Math. Comp.,v. 32, 1978, pp. 559—-569.

5. H. C. WILLIAMS, G. CORMACK & E. SEAH, “Computation of the regulator of a pure
cubic field,” Math. Comp. (To appear.)



